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In this paper, we establish a quadrature formula and some basic properties of the
zeros of a sequence (Pn)n of orthogonal matrix polynomials on the real line with
respect to a positive definite matrix of measures. Using these results, we show
how to get an orthogonalizing matrix of measures for a sequence (Pn)n satis-
fying a matrix three-term recurrence relation. We prove Blumenthal's theorem
for orthogonal matrix polynomials describing the support of the orthogonalizing
matrix of measures in case the matrix recurrence coefficients associated with these
matrix polynomials tend to matrix limits having the same entries on every diagonal.
� 1996 Academic Press, Inc.

1. Introduction

A close relationship between orthogonal matrix polynomials (or matrix
polynomials satisfying a matrix three-term recurrence formula) and scalar
polynomials satisfying a higher order recurrence formula has been estab-
lished very recently (see [D1, D2, and DV]). Thus, in [DV], the following
theorem has been proved:

Theorem A. Suppose pn(x) (n=0, 1, 2, ...) is a sequence of polynomials
satisfying the following (2N+1)-term recurrence relation

tNpn(t)=cn, 0pn(t)+ :
N

k=1

(cn, k pn&k(t)+cn+k, kpn+k(t)), (1.1)
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where cn, 0 (n=0, 1, 2, ...) is a real sequence and cn, k (n=0, 1, 2, ...) are com-
plex sequences for k=1, ..., N, with cn, N{0 for every n and with the initial
conditions pk(x)=0 for k<0 and pk given polynomials of degree k, for k=
0, ..., N&1. We define the sequence of matrix polynomials (Pn)n by

Pn(t)=\
RN, 0( pnN)(t)

RN, 0( pnN+1)(t)
b

RN, 0( pnN+N&1)(t)

} } }
} } }
. . .
} } }

RN, N&1( pnN)(t)
RN, N&1( pnN+1)(t)

b

RN, N&1( pnN+N&1)(t)+ , (1.2)

where the operator RN, m (m=0, ..., N&1) is defined by

RN, m( p)(t)=:
n

p (nN+m)(0)
(nN+m)!

tn,

so that

p(t)=RN, 0( p)(tN )+tRN, 1(tN )+ } } } +tN&1RN, N&1(tN ).

Then the sequence of matrix polynomials defined by (1.2) is orthonormal on
the real line with respect to a positive definite matrix of measures and
satisfies a matrix three-term recurrence relation.

Conversely, suppose Pn=(Pn, m, j )
N&1
m, j=0 is a sequence of orthonormal

matrix polynomials or equivalently satisfying a matrix three-term recurrence
relation (without loss of generality we can assume the leading coefficient
of Pn to be a lower triangular matrix), then the scalar polynomials defined
by

PnN+m(t)= :
N&1

j=0

t jPn, m, j (tN ), (n # N, 0�m�N&1),

satisfy a (2N+1)-term recurrence relation of the form (1.1).

In this paper, we consider matrix polynomials satisfying the three-term
recurrence relation

tPn(t)=Dn+1 Pn+1(t)+EnPn(t)+Dn*Pn&1(t) (1.3)

with P0(t)=I and P&1(t)=0, where Pn(t) are matrix polynomials with
coefficients in CN_N and the recurrence coefficients Dn+1 , En are also
N_N matrices. We can assume (see the proof of the previous theorem in
[DV]) the matrices Dn to be lower triangular matrices with det Dn{0 and

97orthogonal matrix polynomials
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En*=En . Thus the expression of the matrices Dn , En , in terms of the
recurrence coefficients which appear in (1.1), is

cnN, n 0 0 } } } 0

cnN, N&1 cnN+1, N 0 } } } 0

Dn=\cnN, N&2 cnN+1, N&1 cnN+2, N } } } 0 + ,

b b b
. . . b

cnN, 1 cnN+1, 2 cnN+2, 3 } } } cnN+N&1, N

and

cnN, 0 cnN+1, 1 cnN+2, 2 } } } cnN+N&1, N&1

cnN+1, 1 cnN+1, 0 cnN+2, 1 } } } cnN+N&1, N&2

En=\ cnN+2, 2 cnN+2, 1 cnN+2, 0 } } } cnN+N&1, N&3+ .

b b b
. . . b

cnN+N&1, N&1 cnN+N&1, N&2 cnN+N&1, N&3 } } } cnN+N&1, 0

Matrix polynomials (Pk(t))k satisfying a recurrence formula of the form
(1.3) are orthonormal with respect to some Hermitian matrix of measures
M=(+k, l )

N
k, l=1 which is positive definite:

| Pn(t) dM(t) P*m(t)=$m, nI.

In Section 2 of this paper we study the properties of the zeros of the matrix
polynomials (Pn)n (as usual, the zeros of the matrix polynomial Pn are the
zeros of det Pn), and establish a quadrature formula for the matrix inner
product defined by the matrix of measures M. More precisely, we prove
that

Theorem 1.1. (a) The zeros of Pn have a multiplicity not bigger than
N. Furthermore Pn has nN zeros (taking into account their multiplicities) and
all the zeros are real (n # N).

(2) If a is a zero of multiplicity p of Pn , then rank(Pn(a))=N&p. If
a is a zero of Pn and Pn+1 , then Pn(a) and Pn+1(a) do not have any common
eigenvector associated to 0.

(3) If we write xn, k (k=1, ..., nN) for the zeros of Pn ordered in
increasing size (and taking into account their multiplicities), then

xn+1, k�xn, k�xn+1, k+N for k=1, ..., nN.

(4) If xn, k is a zero of Pn of multiplicity just N, then Pn(a)=% (here
and in the rest of this paper, we write % for the null matrix, the dimension

98 duran and lopez-rodriguez
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of which can be determined from the context. For instance, here % is the
N_N null matrix). Furthermore every complex value of x1�N

n, k is a zero of the
N consecutive scalar polynomials pnN (t), ..., pnN+N&1(t). In this case the real
number xn, k can not be a zero of the matrix polynomial Pn+1 .

(5) Associated with every zero xn, k of the matrix polynomial Pn

(k=1, ..., nN ) there exists a N_N positive semidefinite matrix Bn, k such
that

| P(t) dM(t) Q*(t)= :
nN

k=1

P(xn, k) Bn, kQ*(xn, k) (1.4)

for P, Q matrix polynomials satisfying dgr(P)+dgr(Q)�2n&1.

By using the relationship given in Theorem A and by considering the
zeros of Pn as the eigenvalues of a certain Hermitian matrix, the proof of
those results will be surprisingly simple. Using a different approach, other
quadrature formulas have been found recently for orthonormal matrix
polynomials by Sinap and Van Assche (see [SV]). The proof given here for
the formula (1.4) should be compared with the proof given there. In a sub-
sequent paper, one of the authors has completed Theorem 1.1 by giving
new properties on the zeros of orthogonal matrix polynomials and a closed
expression for the quadrature weights. These results have been used to
extend Markov's theorem for orthogonal matrix polynomials (see [D3]).

From the N_N positive definite matrices (Bn, k)n, k which appear in the
quadrature formula (1.4), we can define a sequence of discrete positive
definite matrices of measures by

+n= :
nN

k=1

Bn, k$x n, k ,

where xn, k (k=1, ..., nN) are the zeros of Pn . We complete Section 2 by
proving that, as in the scalar case, an orthogonalizing measure for the
matrix polynomials (Pn)n can be obtained as a limit point of these matrices
of measures. Taking into account that this result will follow from
Theorem 1.1 and that this theorem is a consequence of the fact that the
matrix polynomials (Pn)n satisfy the matrix three-term recurrence relation
(1.3), the results proved in this Section 2 provide a new proof of Favard's
theorem for matrix polynomials satisfying a matrix three-term recurrence
relation (for other proofs using different approaches, see [AN], or [D2]).

Finally, we establish in Section 3 Blumenthal's theorem for matrix polyno-
mials. Indeed, we assume the recurrence coefficients in the formula (1.1) to
be convergent sequences, i.e., for k=0, ..., N, the sequence (cn, k)n satisfies
ck=limn � � cn, k . According to the relationship given in Theorem A, this is

99orthogonal matrix polynomials
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equivalent to assuming that the matrix recurrence coefficients in (1.3) are
converging to the matrices D, E which have equal entries on every diagonal
(finite Toeplitz matrices), D is lower triangular and the entries of the upper
ith diagonal of E are the same as the entries of the lower (N+2&i) th
diagonal of D. With this hypothesis, we prove that the support of the
orthogonalizing matrix of measures (i.e., the support of the trace measure
of this matrix of measures) is a compact interval and, possibly, two sequen-
ces of real numbers outside this interval which tend to the endpoints. This
interval is given by

[c0+ inf
x # [&?, ?]

t(x), c0+ sup
x # [&?, ?]

t(x)],

where t(x) is the trigonometric polynomial

t(x)=\ :
N

k=1

2R(ck) Tk(cos x)+&\ :
N

k=1

2 sin(x) I(ck) Uk&1(cos x)+ ,

and (Tk)k , (Uk)k are the Chebyshev polynomials of the first and second
kind, respectively. We give an example to show that the convergence of the
matrix recurrence coefficients in (1.3) is not enough to guarantee the sup-
port of the matrix of measures to be a compact interval and, possibly, two
sequences outside this interval which tend to the limit points of it. The
Toeplitz nature of the limit matrices is needed for this structure of the
support.

2. Zeros of Orthogonal Matrix Polynomials

In this Section, we study the zeros of a sequence (Pn)n of N_N matrix
polynomials satisfying a three-term recurrence relation as (1.3); let us recall
that we can assume the matrices Dk to be lower triangular matrices with
det Dk{0 and Ek*=Ek . As usual, a point x0 is a zero of a matrix polyno-
mial P(x), if det P(x0)=0, i.e., x0 is a zero of the scalar polynomial
det P(x).

Let us consider the infinite dimensional matrix defined by putting the
sequences of matrices (Dk)k , (Ek)k , (Dk*)k , which appear in the recurrence
formula (1.3), on the diagonals of the matrix J :

J=\
E0

D1*
D1

E1

D2*
D2

E2
. . .

D3
. . .

. . .+ . (2.1)

100 duran and lopez-rodriguez
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It is clear that J is a (2N+1)-banded infinite Hermitian matrix. We call
this matrix the N-Jacobi matrix associated with the polynomials (Pn)n . It
is worth to note that this N-Jacobi matrix can be obtained by putting on
the diagonals the recurrence sequences which appear in the (2N+1)-term
recurrence formula (see (1.1)) satisfied by the scalar polynomials ( pn)n ,
associated with (Pn)n according to Theorem A.

The N-Jacobi matrix is going to play a fundamental role in the study of
the properties of the zeros of the matrix polynomials (Pn)n , moreover,
Theorem 1.1 will be a consequence of the following lemma.

Lemma 2.1. For n # N, the zeros of the matrix polynomial Pn(t) are the
same as those of the polynomial det(tInN&JnN ) (with the same multiplicity ),
where InN is the identity matrix of dimension nN and JnN is the truncated
N-Jacobi matrix of dimension nN.

To prove Lemma 2.1, we need the following lemma which is interesting
in its own right. Note that for a given matrix A, we denote by Adj(A) the
classical adjoint, i.e., the matrix uniquely defined by the property

A Adj(A)=Adj(A) A=det(A) I.

Lemma 2.2. Let A(t) be a N_N matrix polynomial and let a be a zero
of A(t). We put

R(a, A)=[v # CN : A(a) v*=%].

If dim(R(a, A))=p, then

(Adj(A(t)))(l ) (a)=%, for l=0, ..., p&2,

and a is a zero of A(t) of multiplicity at least p.

Proof of Lemma 2.2. Let us introduce some notation. We write Ai, j (t)
for the (N&1)_(N&1) matrix polynomial obtained from A(t) by deleting
its i th row and j th column. We write ri, j (t)=det(Ai, j (t)), i.e., the minor of
the entry (i, j ) of the matrix polynomial A(t). Up to a sign the polynomial
ri, j is the entry ( j, i ) of the matrix polynomial Adj(A(t)).

We must prove that r (l )
i, j (a)=0 for l=0, ..., p&2.

We write Ai, j , (m1 , k 1), ..., (mn , kn)(t) for the matrix polynomial obtained by
differentiating kd (kd�1) times the column md (d=1, ..., n�N ) of Ai, j . We
then get the following expression for r (l )

i, j (a):

r(l )
i, j (a)= :

�n
d=1 k d=l

:(m 1 , k1), ..., (mn , ..., kn) det (Ai, j, (m1 , k1), ..., (m n , kn)(a)),

101orthogonal matrix polynomials
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for certain nonnegative integers :(m1 , k 1), ..., (mn , kn) . The result

(Adj(A(t)))(l ) (a)=%, for l=0, ..., p&2

follows if we prove that for 0�l�p&2, �n
d=1 kd=l implies

det(Ai, j, (m 1 , k1), ..., (mn , kn)(a))=0.

Let us consider the subspace U of R(a, Ai, j ) defined by

u # U if and only if um1
= } } } =umn=0,

where um denotes the m th component of the vector u. From the definition
of Ai, j , it is clear that

dim(R(a, Ai, j ))�dim(R(a, A))&1.

We have then that

dim(U)�dim(R(a, Ai, j ))&n�dim(R(a, A))&n&1=p&n&1

=p&1& :
n

d=1

1�p&1& :
n

d=1

kd=p&1&l�1.

Hence, we can take u # U, u{%.
The matrix Ai, j, (m1 , k1), ..., (mn , k n)(a) differs from Ai, j (a) just in the columns

m1 , ..., mn . The vector u has just these components equal to 0, and since
u # R(a, Ai, j ) it follows that

Ai, j, (m1 , k 1), ..., (mn , kn)(a) u*=Ai, j (a) u*=%.

Since u{%, we have that

det(Ai, j, (m 1 , k1), ..., (mn , kn)(a))=0.

By differentiating the formula Adj(A(t)) A(t)=det A(t) I and taking into
account what we have already proved, we obtain that

(Adj(A(t)))(l ) (a) A(a)=(det A(t))(l ) (a) I, for l=0, ..., p&1.

Since A(a) is singular, we deduce that (det A(t))(l ) (a)=0, l=0, ..., p&1,
and so a is a zero of A(t) of multiplicity at least p. K

We now prove Lemma 2.1

102 duran and lopez-rodriguez
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Proof of Lemma 2.1. Let a be an eigenvalue of the matrix JnN , and let
v an eigenvector (v{%) of this matrix corresponding to the eigenvalue a.
We write v as a block column:

v=\
v0

v1

b

vn&1
+ , (2.2)

where vi # CN. The equation JnNv=av can be written

E0v0+D1 v1=av0 ,

D1*v0+E1v1+D2v2=av1 ,

b

D*n&1vn&2+En&1 vn&1=avn&1,

which by the three-term recurrence relation for Pn , and using that Dk is
non-singular, successively gives

v1=P1(a) v0 ,

v2=P2(a) v0 ,

b

vn&1=Pn&1(a) v0 ,

%=Pn(a) v0 .

This shows that v0{% (otherwise v=%), and hence Pn(a) is singular, i.e.,
a is a zero of Pn .

If Va is the space of right eigenvectors of the matrix JnN for the eigen-
value a, then Wa=[v0 : v # Va] is a subspace of C N of the same dimension
as Va , and Pn(a) v0=%, for v0 # Wa . This shows that Wa/R(a, Pn), where
by R(a, Pn) we denote the space of right eigenvectors of the matrix Pn(a)
for the eigenvalue 0. Conversely, if Pn(a) v0=% for some v0 # C N, and if we
define vk=Pk(a) v0 , k=1, ..., n&1, then v defined by (2.2) is an eigenvec-
tor for JnN corresponding to a. This shows that Wa=R(a, Pn). And so, we
conclude that the dimension of R(a, Pn) is just the multiplicity of a as an
eigenvalue of JnN . From Lemma 2.2, we deduce that a is a zero of Pn(t) of
multiplicity at least the multiplicity of a as an eigenvalue of JnN .

The zeros of Pn are the zeros of det Pn . Since the matrices (Dk)k are
lower triangular and non-singlar, from the matrix three-term recurrence
formula it follows that det Pn is a polynomial of degree just nN. The matrix

103orthogonal matrix polynomials
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JnN is a nN_nN matrix, so det(tInN&JnN ) is a polynomial of degree just
nN, so from the result proved above, it follows that the zeros of the matrix
polynomial Pn coincide with (and have the same multiplicity as) those of
the polynomial det(tInN&JnN ). Moreover, the matrix

Aa=\
P0(a)
P1(a)

b

Pn&1(a)+ (2.3)

defines a bijection between R(a, Pn) and the subspace of eigenvectors of the
matrix JnN associated with the eigenvalue a. K

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. From the Lemma 2.1, and taking into account
that the matrix JnN is a nN_nN Hermitian (2N+1)-banded matrix, (1) of
Theorem 1.1 follows. We have proved, in Lemma 2.1, that the multiplicity
of a coincides with the dimension of R(a, Pn), the space of right eigenvec-
tors of the matrix Pn(a) for the eigenvalue 0. But the dimension of this
space is just N&rank(Pn(a)). If Pn(a) and Pn+1(a) had a common eigen-
vector v, then the recurrence formula would imply that a would be a zero of
Pn&1, and then v would also be an eigenvector of Pn&1(a) associated to 0.
Proceeding successively we would obtain that a would be a zero of P0 ,
which is a contradiction since P0 is non-singular.

To prove (3) of Theorem 1.1, it will be enough to observe that the matrix
JnN is obtained from J(n+1) N by deleting the last N rows and columns, so
the inclusion principle [HJ, p. 189] gives the separation properties for the
zeros of Pn .

Now, we prove (4) of Theorem 1.1. If xn, k is a zero of Pn of multiplicity
N, we deduce from part (2) of this theorem that Pn(xn, k)=%, and then each
vector u of CN is an eigenvector of Pn(xn, k) associated to the eigenvalue 0.
If Pn+1(xn, k) was singular then Pn(xn, k) and Pn+1(xn, k) would have a com-
mon eigenvector associated to 0, which contradicts (2). The rest of (4)
follows from the relationship between the orthogonal matrix polynomials
and scalar polynomials satisfying a higher order recurrence formula, which
was given in the Introduction of this paper (see Theorem A).

Finally, we prove (5), i.e., the quadrature formula. Indeed, let us consider
a zero xn, l+1 of Pn with multiplicity just m�N. We can assume that
xn, l+1=xn, l+2= } } } =xn, l+m . We proved that the matrix Ax n , l+1

(see
(2.3)) establishes a bijection between the subspace R(xn, l+1 , Pn) and the
subspace of eigenvectors of the matrix JnN associated with the eigenvalue
xn, l+1. Now, we choose a basis [vl+1 , ..., vl+m] in R(xn, l+1 , Pn) such that
the vectors Axn , l+1

vl+1, ..., Axn , l+1
vl+m form an orthonormal basis of the

104 duran and lopez-rodriguez
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subspace of eigenvectors associated with the eigenvalue xn, l+1 of the matrix
JnN . By proceeding in this way for every zero of the matrix polynomial Pn ,
and since eigenvectors corresponding to different eigenvalues are
orthogonal, we obtain an orthonormal basis

[Ax n, 1
v1 , ..., Axn, nN vnN]

in CnN. If we use these vectors as the columns of a matrix B, it is
straightforward that this nN_nN matrix is unitary. The quadrature for-
mula for the polynomials (Pn)n is implicity involved in this property of the
matrix B, as will be shown next.

According to the definition of the matrices Ax n, l (see (2.3)), we can write
the matrix B as

B=(Pk(xn, l ) vl )k=0, ..., n&1,
l=1, ..., nN

, (2.4)

where Pk(xn, l ) vl is a block of dimension N_1. Now, we consider the
nN 2_nN matrix C defined by

C=\
v1

%
b

%

%
v2

b

%

%
%
b

%

} } }
} } }
. . .
} } }

%
%
b

vnN
+ .

If we split up the nN 2_nN 2 matrix CC* in blocks of dimension N_N, we
can write it as a block diagonal matrix

Bn, 1

CC*=\ . . . + ,

Bn, nN

where the matrices Bn, k are defined by Bn, k(i, j )=vk, i v� k, j , i, j=1, ..., N. So,
these matrices are positive semidefinite. According to the definition of the
matrix B (see (2.4)) and C, the condition BB*=I can be written as

P0(xn, 1) } } } P0(xn, nN )

\ b
. . . b +Pn&1(xn, 1) } } } Pn&1(xn, nN )

P0*(xn, 1) } } } P*n&1(xn, 1)

CC* \ b
. . . b +=I.

P0*(xn, nN ) } } } P*n&1(xn, nN )
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If we split up the matrix

P0(xn, 1) } } } P0(xn, nN )

\ b
. . . b + ,

Pn&1(xn, 1) } } } Pn&1(xn, nN )

in the above product, in blocks of dimension N_nN, according to the
definition of the matrices Bn, k (k=1, ..., nN ), we have

:
nN

i=1

Pk(xn, i ) Bn, i Pl*(xn, i )=$k, l IN_N (2.5)

for 0�k, l�n&1. By definition of the vectors (vi )i=1, ..., nN , we have that
Pn(xn, i ) vi=vi*Pn*(xn, i )=%, i=1, ..., nN. This gives

Pn*(xn, 1)

(Pn(xn, 1), ..., Pn(xn, nN )) C=% and C* \ b +=%.

Pn*(xn, nN )

So, for k, l=0, ..., n&1 we have that

{
Pn*(xn, 1)

(2.6)

(Pk(xn, 1), ..., Pk(xn, nN )) CC* \ b +=%,

Pn*(xn, nN )

Pk*(xn, 1)

(Pn(xn, 1), ..., Pn(xn, nN )) CC* \ b +=%.

Pk*(xn, nN )

From (2.5) and (2.6), we get

:
nN

i=1

Pk(xn, i ) Bn, i Pl*(xn, i )=$k, l IN_N

for k=0, ..., n&1 and l=0, ..., n, or k=0, ..., n and l=0, ..., n&1. The
orthonormality of the polynomials (Pn)n gives that

:
nN

i=1

Pk(xn, i ) Bn, i Pl*(xn, i )=| Pk(t) dM(t) Pl*(t)

for k=0, ..., n&1 and l=0, ..., n, or k=0, ..., n and l=0, ..., n&1. That is,
the quadrature formula (1.4) for the polynomials (Pk)n&1

k=0 , (Pl )
n
l=0 or

(Pk)n
k=0 , (Pl )

n&1
l=0 . By linearity, the quadrature formula will hold for all

matrix polynomials P, Q for which dgr(P)+dgr(Q)�2n&1. K
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Remark 2.3. Proceeding as in the proof of Lemma 2.1, it is possible to
show that the zeros of certain perturbations of the matrix polynomial Pn

are also real. Let A be a N_N matrix. If DnA=A*Dn*, then the zeros of
Pn&APn&1 are also real. Moreover, if a is a zero of multiplicity p of
Pn&APn&1, then rank(Pn(a)&APn&1(a))=N&p.

Proof. Let a be a zero of the matrix polynomial Pn&APn&1, and let v0

be an eigenvector of the numerical matrix Pn(a)&APn&1(a) associated to
0. Let us define vk=Pk(a) v0 , k=1, ..., n&1, and v as in (2.2). Then, using
the three term recurrence formula (1.3) it is easy to show that v is an eigen-
vector of the matrix

E0 D1

D1* E1 D2\ . . .
. . .

. . . +D*n&2 En&2 Dn&1

D*n&1 En&1+DnA

associated to a. Since Dn A is hermitian a must be real. The rest can be
proved as in Lemma 2.1. K

To complete this section, we show that an orthogonalizing positive
definite matrix of measures for the polynomials (Pn)n can be obtained from
the positive semidefinite matrices which appear in the quadrature formula
(1.4). To do that, we consider the following positive definite and discrete
matrices of measures

+n= :
nN

k=1

Bn, k$x n, k , n�0,

where xn, k , k=1, ..., nN, are the zeros of the polynomial Pn (in increasing
order and taking into account their multiplicities), and Bn, k , k=1, ..., nN are
the weights in the quadrature formula (1.4). We prove that, as in the scalar
case, we can obtain an orthogonalizing positive definite matrix of measures
for the polynomials (Pn)n as a limit point of these matrices of measures.

First of all, we need to recall some known results. By C([&a, b], CN_N )
we denote the space of continuous functions from the interval [&a, b] to
the linear space of complex N_N matrices. The dual space C$([&a, b],
CN_N ) will be the space of N_N matrices whose entries are Borel
measures. It is clear that the unit ball of C$([&a, b], CN_N ) is weakly
compact (Banach�Alaoglu).

Now, for a, b # R+, we consider the matrix of measures

+n |[&a, b]
= :

nN

k=1
x n, k # [&a, b]

Bn, k $x n, k .

107orthogonal matrix polynomials
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Given two increasing sequences (ak)k , (bk)k , for which ak , bk � +� as
k � +�, doing a diagonal process and taking into account the weak com-
pactness of the unit ball of the space C$([&a, b], C N_N ), we obtain an
increasing sequence of nonnegative integers (nm)m , and for every k # N a
matrix of measures +(k) # C$([&ak , bk], CN_N ) such that

lim
m � � |

[&a k , bk]
f (t) d+nm (t)=|

[&a k , b k]
f (t) d+(k)(t), (2.7)

for all f # C([&ak , bk], CN_N ). We can also get +(k)=+(k$) on [&ak , bk]
for k�k$. From these matrices of measures, we obtain a matrix of
measures + # C$(R, CN_N ) which extends the measures +(k), (k # N), i.e.,
the measure + is such that for every k # N, +=+(k) in [&ak , bk]. Since the
matrices of measures (+n m)m are positive definite, it follows that the
matrices of measures +(k) are positive definite, and so is +.

Now, we prove that

|
R

tnI d+(t)= lim
m � � |

R

tnI d+nm(t), for all n # N, (2.8)

where I is the identity matrix of dimension N. For fixed n # N the quad-
rature formula (1.4) gives for nm , nm$>n that

|
R

tnI d+n m(t)=|
R

tnI d+nm$
(t).

If we write An for this matrix, we must prove that An=�R tnI d+(t). Let
& }&2 be the spectral norm defined by

&A&2=max [- * : * is an eigenvalue of A*A].

For nm>n, we have

"|
bk

&a k

tn I d+(t)&An"2

="|
b k

&ak

tnI d+(t)&|
R

tnI d+nm(t)"2

�"|
b k

&ak

tnI d+(t)&|
bk

&a k

tnI d+nm(t)"2

+"|
&ak

&�
tnI d+nm(t)+|

�

bk

tnI d+nm(t)"2

.
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Given =>0, since +=+(k) in [&ak , bk], for nm big enough, (2.7) gives

"|
b k

&a k

tn I d+(t)&|
bk

&a k

tnI d+nm(t)"2

<=.

Now, if we take a nonnegative integer l such that 2l>n, we have that

|tn |= } t2l

t2l&n }�\ 1
min [ak , bk]+

2l&n

t2l for t � [&ak , bk].

Hence, we have the following matrix inequalities (as usual A�B if B&A
is positive semidefinite)

&\ 1
min [ak , bk]+

2l&n

\|
&a k

&�
t2l I d+nm(t)+|

�

bk

t2l I d+nm(t)+
�|

&ak

&�
tn I d+nm(t)+|

�

bk

tn I d+nm(t)

�\ 1
min [ak , bk]+

2l&n

\|
&ak

&�
t2l I d+nm(t)+|

�

b k

t2l I d+nm(t)+ .

Since t2l�0, for t # R, and the matrix of measures +n m is positive definite,
it follows that the matrix

\ 1
min [ak , bk]+

2l&n

\|
&ak

&�
t2l I d+n m(t)+|

�

bk

t2l I d+n m(t)+
is also positive definite. By the definition of the spectral norm & }&2 , we get

"|
&ak

&�
tnI d+nm(t)+|

�

bk

tnI d+nm(t)"2

�\ 1
min [ak , bk]+

2l&n

"|
&a k

&�
t2l I d+nm(t)+|

�

bk

t2l I d+nm(t)"2

�\ 1
min [ak , bk]+

2l&n

"|R

t2l d+nm(t)"2

=\ 1
min [ak , bk]+

2l&n

&A2l &2

Let k � �, then this proves (2.8).
From (2.8), and the quadrature formula (1.4), it follows that the polyno-

mials (Pn)n are orthonormal with respect to the positive definite matrix of
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measures +. Observe that + may not be unique since we have selected only
one possible weak limit of the sequence of discrete measures given by the
quadrature formula.

3. Blumenthal's Theorem for Orthogonal Matrix Polynomials

In this section we extend Blumnethal's theorem regarding the support of
the orthogonalizing measure for a sequence of orthogonal polynomials on
the real line in case the recurrence coefficients associated with these polyno-
mials tend to finite limits, i.e., the orthogonalizing measure + belongs to the
Nevai class M(a, b), for certain a>0 and b # R.

Our extension is to orthogonal matrix polynomials for which the
recurrence matrix coefficients satisfy a similar condition.

We consider again a sequence (Pn)n of N_N matrix polynomials satisfy-
ing a three-term recurrence relation of the form (1.3). Without loss of
generality, we can assume the matrices Dk to be lower triangular matrices
with det Dk{0 and Ek*=Ek . We also consider the scalar polynomials
( pn)n associated with the matrix polynomials (Pn)n as in theorem A of the
introduction. The polynomials satisfy a (2N+1)-term recurrence relation
of the form (1.1). Then, we can assume that the recurrence coefficients in
this recurrence relation tend to finite limits. We denote these limits by
c0 , ..., cN :

ck= lim
n � �

cn, k , k=0, ..., N.

Since the sequence (cn, 0)n is real, the number c0 is also real.
According to the relationship, given in the introduction of this paper,

between the matrix coefficients in the recurrence formula for (Pn)n and the
scalar coefficients in the (2N+1)-term recurrence formula for ( pn)n , the
hypothesis is equivalent to the following: the matrix coefficients (Dk)k ,
(Ek)k tend to the matrix limits D=(Di, j ) i, j=1, ..., N , E=(Ei, j ) i, j=1, ..., N ,
which satisfy

for i< j, Di, j=0,

for m=0, ..., N&1, Di+m, i=Dj+m, j , i, j=1, ..., N&m,

for m=0, ..., N&1, Ei+m, i=Ej+m, j , i, j=1, ..., N&m,

and for m=2, ..., N, E1, m=DN&m+2, 1

that is, the matrix limit D is lower triangular, D and E have equal entries
on every diagonal (finite Toeplitz matrices) and the entries of the upper i th

110 duran and lopez-rodriguez
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diagonal of E are the same as the entries of the lower N+2&i th diagonal
of D. Define the support of + by

supp(+)=supp(tr(+))=supp(+1, 1++2, 2+ } } } ++N, N ). (3.1)

We can now prove the following theorem

Theorem 3.1. Assume that the coefficients in the matrix three-term recur-
rence relation converge to Toeplitz matrices. Define the trigonometric polynomial

t(x)=\ :
N

k=1

2R(ck) Tk(cos x)+&\ :
N

k=1

2 sin(x) I(ck) Uk&1(cos x)+ ,

where (Tk)k and (Uk)k are the Chebyshev polynomials of the first and second
kind, respectively. Let + be the positive definite matrix of measures with
respect to which the matrix polynomials (Pn)n are orthonormal. Then the
support of + is the compact interval [c0+infx # [&?, ?] t(x), c0+supx # [&?, ?]

t(x)] and, possibly, two sequences of real numbers outside this interval which
tend to the endpoints. More precisely

[c0+ inf
x # [&?, ?]

t(x), c0+ sup
x # [&?, ?]

t(x)]/supp(+),

and for every =>0 the set

supp(+)"[c0+ inf
x # [&?, ?]

t(x)&=, c0+ sup
x # [&?, ?]

t(x)+=]

is finite.

Before proving the theorem, we give an example proving that the
theorem is not true (the support of + does not need to be a compact inter-
val and, possibly two sequences tending to the endpoints) if we assume that
the matrix recurrence coefficients (Dk)k , (Ek)k tend to matrix limits D, E
without the restriction of equal entries on the diagonal. Let +1 and +2 be
two positive measures in the classes M(a, b) and M(a$, b$), respectively,
where a{a$, and b{b$. Let us put ( pn, 1)n , ( pn, 2)n for the orthonormal
polynomials associated with +1 , +2 , respectively. Define the positive definite
matrix of measures & by

&=\+1

0
0
+2+ .

If we write the recurrence relations for ( pn, 1)n , ( pn, 2)n in the form

an+1, 1pn+1, 1(t)+bn, 1pn, 1(t)+an, 1pn&1, 1(t)=tpn, 1(t),

an+1, 2pn+1, 2(t)+bn, 2pn, 2(t)+an, 2pn&1, 2(t)=tpn, 2(t),

111orthogonal matrix polynomials



F
ile

:6
40

J
29

04
17

.B
y:

B
V

.D
at

e:
20

:0
1:

96
.T

im
e:

17
:1

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

27
86

Si
gn

s:
19

27
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

then it is not hard to see that the matrix recurrence coefficients for the
orthonormal matrix polynomials with respect to & are

Dk=\ak, 1

0
0

ak, 2+ , Ek=\bk, 1

0
0

bk, 2+ .

These recurrence coefficients tend to the matrices

D=\
a
2

0

0

a$
2+ , E=\b

0
0
b$+ .

But the support of & is [b&a, b+a] _ [b$&a$, b$+a$] and, possibly,
some sequences tending to the endpoints of these intervals. Taking
b+a<b$&a$, the support of & is not an interval.

Proof of Theorem 3.1. We consider the (2N+1)-banded Jacobi matrix
associated with the matrix polynomials (Pn)n (see (2.1)). The sequences on
the diagonals of this infinite matrix, that is, (cn+k, k)n , k=0, ..., N and
(cn, k)n , k=1, ..., N, are (by hypothesis) convergent sequences, with limits
ck=limn � � cn, k , k=0, ..., N. This implies that the operator associated
with the matrix J in the Hilbert space l2 and defined by

J : l2 � l2

J((an)n)=(an)n J,

is bounded. In [D2, Sect. 3], we show how to get an orthogonalizing
matrix of measures for (Pn)n from the resolution of the identity of any self-
adjoint extension of the operator J. From the results proved there and the
boundedness of the operator J, it follows that the orthogonalizing matrix
of measures of the matrix polynomials (Pn)n is unique, and that its support
(defined by (3.1)) coincides with the spectrum of J. So, we are going to
determine this spectrum.

We proceed as in [MNV, Sect. 4]. First, by using the following theorem
of H. Weyl, we replace the matrix J by a simpler one.

Theorem (Weyl). Let A and B be bounded self-adjoint operators on a
Hilbert space, and assume that B is compact. Then the essential spectra of
A and A+B are the same.

The essential spectrum of an operator is defined as the set of limit points
of its spectrum. According to this theorem, we can replace the matrix J by
the (2N+1)-banded infinite matrix J0 having the entries on every diagonal
equal to the limit of the corresponding diagonal in the matrix J. Indeed,
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since the diagonals of the (2N+1)-banded infinite matrix J&J0 tend to
zero, the operator defined by this matrix is compact, and so, J and J0 have
the same essential spectrum. Theorem 3.1 will follow if we prove that the spec-
trum of J0 is the compact interval [c0+infx # [&?, ?] t(x), c0+supx # [&?, ?]

t(x)].
We can assume that cN{0. Indeed, if not, we would have to determine

the spectrum of an operator defined by a (2M+1)-banded infinite matrix
(M<N), instead of a (2N+1)-banded infinite matrix. Consider the
operator J0 acting on the Hardy space H 2, that is, the Hilbert space of
analytic functions f on the unit disk D

f (z)= :
�

j=0

ajz j,

with Taylor coefficients (aj ) j belonging to l2, equipped with the norm

& f&=\ :
�

j=0

|aj |
2+

1�2

.

Using the isomorphism

(aj )
�
j=0 [ :

�

j=0

aj z j

between l2 and H2, the operator J can be represented on H 2 as

(J0 f )(z)=cNzNf (z)+ } } } +c1 zf (z)+c0 f (z)+c1

f (z)
z

+ } } } +cN
f (z)
zN

&f (0) \c1

z
+ } } } +

cN

zN+&f $(0) \c2

z
+ } } }

cN

zN&1+
& } } } &

f (N&1)(0)
(N&1)!

cN

z
.

A complex number * belongs to the spectrum of J0 , if the operator J0&*I
does not have a bounded inverse (I is the identity operator) in H2. Let us
consider the equation (J0&*I ) f=g, where g # H 2 is given. This equation
can be written as

\cN zN+ } } } +c1 z+c0&*+
c1

z
+ } } } +

cN

zN+ f(z)

&f (0) \c1

z
+ } } } +

cN

zN+& } } } &
f (N&1)(0)
(N&1)!

cN

z
=g(z).
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Solving the equation for f (z) we get:

f (z)=
zNg(z)+f (0)(c1 zN&1+ } } } +cN )+ } } } +

f (N&1)(0)
(N&1)!

cNzN&1

cNz2N+ } } } +c1zN+1+(c0&*) zN+c1 zN&1+ } } } +cN
. (3.2)

Let us write

p*(z)=cN z2N+ } } } +c1zN+1+(c0&*) zN+c1zN&1+ } } } +cN .

We have to determine when the equation (3.2) defines a bounded operator
in H 2. We prove that this precisely happens when exactly N of the roots
of p*(z) are inside the unit disk D=[z: |z|<1]. Observe that the 2N roots
of the polynomial p*(z) are of the form x1 , ..., xN , 1�x1 , ..., 1�xN .

Suppose first that none of the roots x1 , ..., xN , 1�x1 , ..., 1�xN has modulus
one. Then N of these roots are inside D. We can suppose these to be
x1 , ..., xN . The function f defined by (3.2) will be analytic on D if and only
if x1 , ..., xN are also zeros of the numerator in (3.2). This gives a linear
system of equations with the N unknowns f (0), ..., f (N&1)(0)�(N&1)! and
the number of equations is equal to the number of different roots in
x1 , ..., xN . If all these roots are different we have a square linear system
whose determinant is

c1xN&1
1 + } } } +cN c2xN&1

1 + } } } +cN x1 } } } cNxN&1
1

det \ b b
. . . b +c1xN&1

N + } } } +cN c2xN&1
N + } } } +cNxN } } } cN xN&1

N

which after some straightforward simplifications becomes

cN
N det \

1
1
b

1

x1

x2

b

xN

} } }
} } }
. . .
} } }

xN&1
1

xN&1
2

b

xN&1
N

+ ,

which is a Vandermonde determinant with value cN
N >1�i< j �N (xj&xi ).

If all the roots x1 , ..., xN are different, then for any given g in H 2 we can
determine uniquely the corresponding f in H2. Then the operator defined
by (3.2) is one-to-one and onto. Hence, it has a bounded inverse, according
to the open mapping theorem.

Let's see now what happens if the multiplicity of any of the roots
x1 , ..., xN is greater than 1. Suppose we have p different roots x1 , ..., xp ,
with multiplicities N1 , ..., Np , respectively, and N1+ } } } +Np=N. In this
case, to compensate for the roots of p*(z) we force the numerator in (3.2)
to have a zero of order just Nm in xm , (m=1, ..., p). Then we get again
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a square linear system with the same unknowns as before. Taking into
account that the derivative of order j of the numerator in (3.2) is

(zNg(z))( j )+f (0) \ (N&1)!
(N&j&1)!

c1zN&j&1+ } } } +j ! cN&j+
+ } } } +

f (N&1)(0)
(N&1)!

(N&1)!
(N&j&1)!

cNzN&j&1, 0� j �N

we have that the determinant of this system is

det\
c1xN&1

1 + } } } +cN } } } cN xN&1
1

+
(N&1) c1 xN&2

1 + } } } +cN&1 } } } (N&1) cNxN&2
1

b b b

(N&1)!
(N&N1)!

c1xN&N1
1 + } } } +(N1&1)! cN&N1+1 } } }

(N&1)!
(N&N1)!

cN xN&N1
1

b b b

c1xN&1
p + } } } +cN } } } cNxN&1

p

(N&1) c1 xN&2
p + } } } +cN&1 } } } (N&1) cNxN&2

p

b b b

(N&1)!
(N&Np)!

c1xN&N1
p + } } } +(Np&1)! cN&Np+1 } } }

(N&1)!
(N&Np)!

cN xN&Np
p

which after some simplifications becomes

cN
N det\

1 x1 } } } xN 1
1 } } } xN p

1 } } } xN&1
1

+
0 1 } } } N1xN 1&1

1 } } } NpxNp&1
1 } } } (N&1) xN&2

1

b b b b b b b b

0 0 } } } N1 ! } } }
Np !

(Np&N1+1)!
xNp&N 1+1

1 } } }
(N&1)!

(N&N1)!
xN&N1

1

b b b b b b b b

1 xp } } } xN1
p } } } xN p

p } } } xN&1
p

0 1 } } } N1xN 1&1
p } } } NpxNp&1

p } } } (N&1) xN&2
p

b b b b b b b b

0 0 } } } 0 } } } Np ! } } }
(N&1)!

(N&Np)!
xN&Np

p
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which we can express in terms of partial derivatives of the Vandermonde
determinant:

cN
N �1+ } } } N1&1+ } } } +1+ } } } +Np&1

�y2 } } } �yN1&1
N1

} } } �yN&N p+1 } } } �yN p&1
N

_\det \
1
1
b

1

y1

y2

b

yN

} } }
} } }
. . .
} } }

yN&1
1

yN&1
2

b

yN&1
N

++ y1= } } } =y N 1=x1
} } }

y N&N p +1= } } } =y N=x p

=cN
N �1+ } } } +N1&1+ } } } +1+ } } } +N p&1

�y2 } } } �yN1&1
N 1

} } } �yN&Np +1 } } } �yNp&1
N

_\ `
1�i< j �N

( yj&yi )+ y 1= } } } =y N 1=x 1
} } }

y N&N p+1= } } } =yN=x p

which is not zero. Again, for any given g in H2, we can determine uniquely the
corresponding f in H2. Thus the operator defined by (3.2) is one-to-one and
onto. Hence, it has a bounded inverse, according to the open mapping theorem.

So, we have proved that when exactly N of the roots of p*(z) are inside the
unit disk D, the equation (3.2) defines a bounded operator in H2. On the
other hand, if * is such that some of the roots x1 , ..., xN of the polynomial p*

have modulus 1, then we must compensate for the roots of the denominator
in D but also for those on the unit circle T, in order that the function f defined
by (3.2) belongs to H2. But in this case, we get a linear system of equations
with N unknowns and more than N equations (let us recall that the roots of
p* are x1 , ..., xN , 1�x1 , ..., 1�xN ). The coefficient matrix for this system is as
before (but not a square matrix), and so the rank of this matrix is N.
However, it is very easy to see than an appropriate choice of the function g
gives an augmented matrix for this system with rank just N+1, and so, for
this function g, the equation (3.2) does not have a solution in H2. For this *,
the operator J0&*I does not have a bounded inverse in H2.

Hence, we have proved that for a given * the equation (3.2) defines a
bounded operator in H2 if and only if the polynomial

p*(z)=cN z2N+ } } } +c1zN+1+(c0&*) zN+c1zN&1+ } } } +cN

has exactly N roots inside the unit disk D=[z: |z|<1]. So the spectrum
of J0 are the *'s for which p*(z) has at least one root on T=[ |z|=1]. But
saying this is the same as saying that the equation

c0&*=&cNzN&cN
1

zN& } } } &c1z&c1

1
z

(3.3)
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has a solution in T. If we write

h(z)=&cNzN&cN
1

zN& } } } &c1 z&c1

1
z

,

then the equation (3.3) has a solution in T if and only if

inf
z # T

h(z)�c0&*�sup
z # T

h(z).

So we deduce that the spectrum of J0 is the compact interval

I=[c0&sup
z # T

h(z), c0& inf
z # T

h(z)].

But according to the definition of Chebyshev polynomials of first and
second kind, we conclude that for z=eix, x # [&?, ?]

h(z)=&cNzN&cN
1

zN& } } } &c1z&c1

1
z

=&\ :
N

k=1

2R(ck) Tk(cos x)++\ :
N

k=1

2 sin(x) I(ck) Uk&1(cos x)+=&t(x).

And the proof of Theorem 3.1 is finished.
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